已知中心在原点的双曲线c的右焦点为(2,0),右顶点为(根号3,0),若直线y=kx+m与双曲线交于不同点m,n且线段mn的垂直平分线过点a(-1,0),求实数m的取值范围,k不等于0,m不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:58:11
已知中心在原点的双曲线c的右焦点为(2,0),右顶点为(根号3,0),若直线y=kx+m与双曲线交于不同点m,n且线段mn的垂直平分线过点a(-1,0),求实数m的取值范围,k不等于0,m不等于0
已知中心在原点的双曲线c的右焦点为(2,0),右顶点为(根号3,0),若直线y=kx+m与双曲线交于不同点m,n
且线段mn的垂直平分线过点a(-1,0),求实数m的取值范围,k不等于0,m不等于0
已知中心在原点的双曲线c的右焦点为(2,0),右顶点为(根号3,0),若直线y=kx+m与双曲线交于不同点m,n且线段mn的垂直平分线过点a(-1,0),求实数m的取值范围,k不等于0,m不等于0
联立y=kx+m,x^2/3-y^2=1得:
(1-3k^2)x^2-6kmx-3(m^2+1)=0
因为y=kx+m与双曲线有两个不同交点
所以 判别式大于0 且 1-3k^2不等于0
即m^2>3k^2-1
设M(X1,Y1),N(X2,Y2),MN中点P(X0,Y0)
则x0=1/2(x1+x2)=(3kmx)/(1-3k^2) y0=kx0+m=m/(1-3k^2)
因为AP垂直于MN
所以kAP*kMN=-1
即[m/(1-3k^2)+1]/[3km/(1-3k^2)]=-1/k
所以有3k^2=4m+1
带入前面的m^2>3k^2-1中得:m4
又有3k^2=4m+1>0
所以m>-1/4
综上m∈(-1/4,0)∪(4,正无穷)
已知中心在原点的双曲线C的右焦点为(2,0)右顶点为(根号3,0)求双曲线c的方程.急,
已知中心在原点的双曲线c的右焦点为抛物线Y^2=8x的焦点,右顶点为椭圆X^2/3+Y^2/2=1的右顶点.求该双曲线?
已知双曲线C的中心在原点,右焦点与抛物线y^=8x
已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2根号3 (1)求双曲线C的方程 (2)若直线l:y=kx+根号2与...已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2根号3 (1)求双曲线C的方程 (2)若直线l:
已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于3/2,则C的方程是什么
已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于3分之2,则C的方程是
已知中心在原点的双曲线C的右焦点为F(3,0) ,离心率等于3 2 ,则C的方程是( )
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(根号3,0).若直线L:y=kx+根号2与双曲线C恒有两个不同
已知双曲线中心在原点O右焦点为(c,0),P是双曲线右支上一点,且三角形OFP的面积为跟6/2 (1)若点P坐标为(2,3)求双曲线的离心率
已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是(2013广东)已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于3/2,则C的方程是?
已知双曲线C的中心在原点且焦点在X轴上,过双曲线C的一个焦点且与双曲线有且只有一个交点的直线的方程为4x-3y+20=0.(1)求双曲线C的方程.(2)若过双曲线的左焦点F1任作直线L,与过右焦点F2的直
已知中心坐标原点的双曲线C的右焦点为已知中心坐标原点的双曲线C的右焦点为(2,0),右顶点为(根号3,0)(1)求双曲线C的方程(2)若直线l:y=kx+根号2与双曲线C恒有两个不同交点A,B.且向量OA*向
已知中心在坐标原点,焦点都在x轴上的双曲线M,离心率e为2,左顶点与右焦点的距离为6已知中心在坐标原点,焦点都在x轴上的双曲线M,离心率e为2,左顶点与右焦点的距离为6求双曲线M的标准
已知双曲线的中心在原点,焦点在X轴上,离心率为2,右焦点到右准线的距离为3分之2 求此双曲线方程
已知双曲线的中心在原点,焦点在X轴上,过双曲线的右焦点且斜率为根号5/5的直线与双已知双曲线的中心在原点,焦点在X轴上,过双曲线的右焦点且斜率为根号5/5的直线与双曲线交于P,Q两点,
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(根号3,0),求双曲线C的方程;(2)若直线:L:Y=kx+根号2与双曲线C恒有两个不同的交点A和B,且OA*OB>2(其中O为原点0.求k的取值范围.
已知中心在原点的双曲线C的右焦点为(2,0)右顶点为(√3,0)①求双曲线C的方程②若直线l:y=kx+√2与双曲线C恒有两个不同的交点A和B且向量OA×OB>2(O为原点)求k的取值范围
已知双曲线的中心在原点,过右焦点F(2,0)做斜率为根号下3/5的直线...已知双曲线的中心在原点,过右焦点F(2,0)做斜率为根号下3/5的直线,交双曲线于M、N两点,且MN的绝对值=4,求双曲线的方程