如图在等边三角形ABC中,点M、N分别在AC、BC上,且AM=CN,BM与AN相交于点E,BD⊥AN于点D.求证:BE=2DE.应该是先证△ABM全等于△ACN,再用直角三角形,如果一个锐角等于30°,那么它所对的直角边等于斜边的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:30:55

如图在等边三角形ABC中,点M、N分别在AC、BC上,且AM=CN,BM与AN相交于点E,BD⊥AN于点D.求证:BE=2DE.应该是先证△ABM全等于△ACN,再用直角三角形,如果一个锐角等于30°,那么它所对的直角边等于斜边的
如图在等边三角形ABC中,点M、N分别在AC、BC上,且AM=CN,BM与AN相交于点E,BD⊥AN于点D.求证:BE=2DE.
应该是先证△ABM全等于△ACN,再用直角三角形,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半来证明.可是中间的过程我完全不懂,
sorry,没有图,希望可以尽力吧!

如图在等边三角形ABC中,点M、N分别在AC、BC上,且AM=CN,BM与AN相交于点E,BD⊥AN于点D.求证:BE=2DE.应该是先证△ABM全等于△ACN,再用直角三角形,如果一个锐角等于30°,那么它所对的直角边等于斜边的
没办法插图,抱歉.
如你所说,先证明三角形ABM全等于三角形ACN,由此得到角CAN等于角ABN,角CAN加角NAB等于角CAB等于60度(等边三角形),于是得到角ABM加角NAB等于60度,即角NAB等于60度(角NEB=角NAB+角ANM),故RT三角形BDE中,角DBE等于30度,由此得到BE=2DE.