已知定义在R上的函数满足:f(x+1)=1/2f(x),且当x属于【0,1】时,f(x)=x^2-x,则方程16f(x)+1=0在【-2,正无穷】上不同解的个数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:37:00
已知定义在R上的函数满足:f(x+1)=1/2f(x),且当x属于【0,1】时,f(x)=x^2-x,则方程16f(x)+1=0在【-2,正无穷】上不同解的个数
已知定义在R上的函数满足:f(x+1)=1/2f(x),且当x属于【0,1】时,f(x)=x^2-x,则方程16f(x)+1=0在【-2,正无穷】上不同解的个数
已知定义在R上的函数满足:f(x+1)=1/2f(x),且当x属于【0,1】时,f(x)=x^2-x,则方程16f(x)+1=0在【-2,正无穷】上不同解的个数
首先做出X属于【0,1】的图像,注意顶点为(1/2,-1/4)
然后向右画X属于【1,2】的图像,顶点为(3/2,-1/8)
依次向右画,注意顶点纵坐标依次减半,向左依次加倍
在画出Y=-1/16(红线),与黑线相交点的个数即为方程解的个数
即9个
这个题目用图像法来做很方便。
1。画出【0,1】上的图像。
2。由于f(x+1)=1/2f(x),所以
f(1)=1/2f(0),f(2)=1/2f(1),
所以在【1,2】上函数图像是【0,1】上的“1/2压扁”,依此类推很容易获得函数在【-2,+无穷】上的图像。
3。16f(x)+1=0即为f(x)=-1/16,找到图像与y=-1/16的交点个数就行了。...
全部展开
这个题目用图像法来做很方便。
1。画出【0,1】上的图像。
2。由于f(x+1)=1/2f(x),所以
f(1)=1/2f(0),f(2)=1/2f(1),
所以在【1,2】上函数图像是【0,1】上的“1/2压扁”,依此类推很容易获得函数在【-2,+无穷】上的图像。
3。16f(x)+1=0即为f(x)=-1/16,找到图像与y=-1/16的交点个数就行了。
收起
同上