sn=1/1x3+4/3x5+9/5x7+```````+n2/(2n-1)x(2n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:37:15

sn=1/1x3+4/3x5+9/5x7+```````+n2/(2n-1)x(2n+1)
sn=1/1x3+4/3x5+9/5x7+```````+n2/(2n-1)x(2n+1)

sn=1/1x3+4/3x5+9/5x7+```````+n2/(2n-1)x(2n+1)
点击看我的大图

n2/(2n-1)(2n+1)=n2/2*(1/(2n-1)-1/(2n+1))=n2/2(2n-1)-n2/2(2n+1);所以原式=(1/2-1/6)+(4/6-4/10)+(9/10-9/14)+(16/14-16/18)+....+n2/2(2n-1)-n2/2(2n+1)化简得n/2-n2/2(2n+1)=(n(n+1))/(2(2n+1))

S=1/2[1-1/3+4/3-4/5+9/5-9/7+...+n^2/(2n-1)-n^2/(2n+1)]=1/2[1+1+1+...+1-n^2/(2n+1)]=1/2[n-1-n^2/(2n+1)]=(n^2-n-1)/2(2n+1)

帮你计算一下:
2n*(2n+1)/(2n-1)=(2n+1)+(2n+1)/(2n-1)=(2n+2)+1/(2n-1)

这个题,其实就是要把上面的n^2先拿下来就可以化为简单的裂项求和了
通项n2/(2n-1)x(2n+1)=n^2/4n^2-1=〔1/4(4n^2-1)+1/4]/4n^2-1
=1/4+1/4·1/(2n-1)(2n+1)
=1/4+1/8〔1/(2n-1)-1/(2n+1)〕
故Sn=n/4+1/8[(1-1/3)+(1/3-1/5)+...+(1/2n-1-1...

全部展开

这个题,其实就是要把上面的n^2先拿下来就可以化为简单的裂项求和了
通项n2/(2n-1)x(2n+1)=n^2/4n^2-1=〔1/4(4n^2-1)+1/4]/4n^2-1
=1/4+1/4·1/(2n-1)(2n+1)
=1/4+1/8〔1/(2n-1)-1/(2n+1)〕
故Sn=n/4+1/8[(1-1/3)+(1/3-1/5)+...+(1/2n-1-1/2n+1)]
=n/4+1/8(1-1/2n+1)
=n/4+2n/8(2n+1)
=n/4+n/4(2n+1)
=n(n+1)/4n+2

收起