函数f(x)=sin(x+π/6)+sin(x+π/3)在哪个区间上单调递增 A (-π/2,π/12) B (-π/3,π/12) C(π/2,π) D (-2/π,π)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:47:32
函数f(x)=sin(x+π/6)+sin(x+π/3)在哪个区间上单调递增 A (-π/2,π/12) B (-π/3,π/12) C(π/2,π) D (-2/π,π)
函数f(x)=sin(x+π/6)+sin(x+π/3)在哪个区间上单调递增
A (-π/2,π/12) B (-π/3,π/12) C(π/2,π) D (-2/π,π)
函数f(x)=sin(x+π/6)+sin(x+π/3)在哪个区间上单调递增 A (-π/2,π/12) B (-π/3,π/12) C(π/2,π) D (-2/π,π)
∵ y=sin(x+π/6)+sin(x+π/3)
=sinxcos(π/6)+cosxsin(π/6)+sinxcos(π/3)+cosxsin(π/3)
=(1/2+√3/2)sinx+(1/2+√3/2)cosx
=(1/2+√3/2)*√2[sinx*(√2/2)+cosx*(√2/2)]
=(1/2+√3/2)*√2[sinx*cos(π/4)+cosx*sin(π/4)]
=(1/2+√3/2)*√2sin(x+π/4)
∵ y=sinx在(-π/2,π/2)上递增
∴ y=sin(x+π/4)在(-3π/4,π/4)上递增
参考选项,选 B
太简单了,答案是B,选我为满意答案吧!
设f(x)=4cos(ωx-π/6)sinωx-cos(2ωx+π),其中ω>0,求函数y=f(x)的值域,请看问题补充f(x)=4cos(ωx-π/6)sinωx-cos(2ωx+π) =4(coswxcosπ/6+sinwxsinπ6)sinwx+cos2wx =2√3sinwxcoswx+2sin²wx+cos2wx =√3si
函数f(x)=sin(2x+π/6),g(x)=cos(x+φ),|φ|
已知函数f(x)=sin^2(x-π/6)+sin^2(x+π/6),若x∈[-π/3,π/6],求函数f(x)的值域
已知函数f(x)=sin(2x+π/6)+sin(2x+π/6)+2cos²x
设函数 f(x)=sin(2x+y),(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f x=SIN(2X+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
已知函数F(X)=SIN(2X+φ)(-π
已知函数f(x)=cos2x/[sin(π/4-x)]
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+ φ)(-π
如果函数f(x)=sin(πx+a)(0
函数f(x)=sin(πx²)(-1
设函数f(x)=sin(2x+φ)(-π