已知椭圆x2/a2+y2/b2=1(a>b>0)经过点A(2,3),焦距为4,M为右顶点,过右焦点F的直线l与椭圆于A,B两点,直线AM,BM与x=8分别交于P,Q两点,(P,Q两点不重合).(1)求椭圆的标准方程.(2)求证向量FP*向量FQ=0.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:51:27
已知椭圆x2/a2+y2/b2=1(a>b>0)经过点A(2,3),焦距为4,M为右顶点,过右焦点F的直线l与椭圆于A,B两点,直线AM,BM与x=8分别交于P,Q两点,(P,Q两点不重合).(1)求椭圆的标准方程.(2)求证向量FP*向量FQ=0.
已知椭圆x2/a2+y2/b2=1(a>b>0)经过点A(2,3),焦距为4,M为右顶点,过右焦点F的直线l与椭圆于A,B两点,直线AM,BM与x=8分别交于P,Q两点,(P,Q两点不重合).(1)求椭圆的标准方程.(2)求证向量FP*向量FQ=0.
已知椭圆x2/a2+y2/b2=1(a>b>0)经过点A(2,3),焦距为4,M为右顶点,过右焦点F的直线l与椭圆于A,B两点,直线AM,BM与x=8分别交于P,Q两点,(P,Q两点不重合).(1)求椭圆的标准方程.(2)求证向量FP*向量FQ=0.
(1)
椭圆x2/a2+y2/b2=1,
焦距为4,2c=4,c=22为F'(-2,0),F(2,0)
∵点A(2,3)在椭圆上,根据椭圆定义
2a=|PF'|+|PF|=√[(4²+3²)+√(0²+3²)=8
∴a=4,b=√(a²-c²)=√12=2√3
∴椭圆的标准方程为:
x²/16+y²/12=1
(2)
l过F(2,0),设直线l:x=ty+2
x=ty+2与 x²/16+y²/12=1联立消去x
得:3(ty+2)²+4y²-48=0
即(3t²+4)y²+12ty-36=0
设A(x1,y1),B(x2,y2)
根据韦达定理:
y1+y2=-12t/(3t²+4),y1y2=-36/(3t²+4)
椭圆右顶点M(4,0),设P(8,m),Q(8,n)
根据AF与FP斜率相等,
∴m/4=y1/(x1-4),m=4y1/(x1-4)
同理:n=4y2/(x2-4)
其中x1-4=ty1-2,x2-4=ty2-2
向量FP=(6,m),向量FQ=(6,n)
∴向量FP●向量FQ
=36+mn
=36+4y1/(x1-4)*4y2/(x2-4)
=36+16y1y2/[(ty1-2)(ty2-2)]
=36+16y1y2/[t²y1y2-2t(y1+y2)+4]
=36-[16×36/(3t²+4)]/[-36t²/(3t²+4)+24t²/(3t²+4)+4]
=36-16×36/[-12t²+12t²+16]
=36-16×36/16
=36-36
=0