已知F1、F2为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,M为椭圆上一点,且∠F1MF2 = 120°,求S△F1MF2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:48:24
已知F1、F2为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,M为椭圆上一点,且∠F1MF2 = 120°,求S△F1MF2
已知F1、F2为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,M为椭圆上一点,且∠F1MF2 = 120°,求S△F1MF2
已知F1、F2为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,M为椭圆上一点,且∠F1MF2 = 120°,求S△F1MF2
设|PF1|=m, |PF2|=n,根据托运定义
m+n=2a (1)
∵∠F1MF2 = 120°,由余弦定理得:
(2c)²=m²+n²-2mncos120º
∴m²+n²+mn=4c² (2)
(1)²-(2):
(m+n)²-(m²+n²+mn)=4(a²-c²)
即mn=4b²
∴S△F1MF2=1/2*mn*sin∠F1MF2
=1/2*4b²*√3/2=√3b²
已知椭圆求x^2/a^2+y^2/b^2=1的左右焦点分别为f1,f2,若以f2为圆心,b-c为半径作园f2,过椭圆上一点P作此圆
已知点P在椭圆Y*2/a*2+X*/b*2上,F1,F2为椭圆的焦点,求PF1*PF2的取值范围
已知F1,F2为椭圆x^2/a^2+y^2/b^2(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B的周长 是16,椭圆已知F1,F2为椭圆x^2/a^2+y^2/b^2(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B的周长 是16,椭圆的离心率e=√3/2(1)
已知椭圆x^2/9+y^2/5=1,F1,F2分别为椭圆的左右焦点点A(1,1)为椭圆内一点,点P为椭圆上一点,求|PA|+|PF1|的最大值
已知F1 F2为椭圆X^/25+Y^2/9=1的两个焦点,过F1的直线交椭圆于AB两点.若|F2A|+|F
已知椭圆x/a+y/b=1 上一点P,F1、F2为椭圆焦点,若∠F1PF2=θ,求证:S△F1PF2=b*tanθ/2已知椭圆x/a+y/b=1 上一点P,F1、F2为椭圆焦点,若∠F1PF2=θ,求证:S△F1PF2=b*tanθ/2
1.已知F1 F2是椭圆x^2/a^2+y^2/(10-a)^2=1(5
已知椭圆x^2/a^2+y^2/25=1的两个焦点为F1,F2,且|F1F2|=8则a=
已知椭圆C:X^2/2+Y^2+1的两焦点为F1、F2,点(X0、Y0)满足0
已知椭圆x^2/4 +y^2/3=1的左、右焦点分别为F1、F2,过F1作倾斜角为45°的直线交椭圆于A、B两点,求AB长度
已知椭圆x^2/16+y^2/9=1的左右焦点分别为F1.F2,过F1作直线交椭圆于A、B两点,若△ANF2的内切圆半径为1,求求三角形的面积.
已知椭圆方程为(x^2)/16+(y^2)/9=1的左、右焦点分别为F1、F2,过左焦点F1的直线交椭圆于A、B两点.求三角形ABF2的周长.
是高二数学文科选修的题.已知椭圆方程为x^2/16+y^2/9=1的左右焦点为F1,F2,过焦点F1的直线交椭圆于A,B两点,求三角形ABF2的周长.
(高中数学)椭圆方程问题已知椭圆C:x^2/a^2+y^2/b^2=1的左右焦点分别为F1,F2,椭圆的离心率为√2/2,椭圆上的点与F1,F2所形成的三角形最大面积为1. 求椭圆C的方程
已知椭圆x^2/16+y^2/9=1的左右焦点分别为F1;F2,点P;F1;F2是一个直角三角形的三个顶点,已知椭圆x^2/16+y^2/9=1的左右焦点分别为F1;F2,点P;F1;F2是一个直角三角形的三个顶点,求点P到x轴的距离?
已知椭圆x^2/9 +y^2/5 =1的焦点为F1、F2,在直线x+y-6=0上找一点M ,求以F1、F2 为焦点,通过点M且长轴最短的椭圆方程.
已知F1 F2为椭圆x^2/16+y^2/9=1的两个焦点 过点F2的直线交椭圆于A B 两点 且绝对值AB=5 求绝对值AF1+绝对值AF2的值
已知椭圆x^2/9+y^2/b^2=1,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,则|BF2|+|AF2|的最大值