设f(x)是定义在[-1,1]的偶函数,f(x)与g(x)的图像关于直线x-1=0对称,且当x属于[2,3]时,g(x)=a(x-2)-2(x-2)^3(a为常数) 若a属于(-6,6),问能否使f(x)的最大值为4.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:08:11

设f(x)是定义在[-1,1]的偶函数,f(x)与g(x)的图像关于直线x-1=0对称,且当x属于[2,3]时,g(x)=a(x-2)-2(x-2)^3(a为常数) 若a属于(-6,6),问能否使f(x)的最大值为4.
设f(x)是定义在[-1,1]的偶函数,f(x)与g(x)的图像关于直线x-1=0对称,且当x属于[2,3]时,g(x)=a(x-2)-2(x-2)^3(a为常数) 若a属于(-6,6),问能否使f(x)的最大值为4.

设f(x)是定义在[-1,1]的偶函数,f(x)与g(x)的图像关于直线x-1=0对称,且当x属于[2,3]时,g(x)=a(x-2)-2(x-2)^3(a为常数) 若a属于(-6,6),问能否使f(x)的最大值为4.
因为g(x)的图象与f(x)的图象关于直线x=1对称,
所以f(x)=g(2-x).
当x∈[-1,0]时,则2-x∈[2,3],
所以f(x)=g(2-x)=2a(2-x-2)-3(2-x-2)^3=-2ax+3x^3
即f(x)=-2ax+3x^3;
当x∈[0,1]时,根据偶函数关于y轴对称可得
f(x)=f(-x)=2ax-3x^3.
综上所述,当x∈[-1,0]时,f(x)=-2ax+3x^3;
当x∈[0,1]时,f(x)=f(-x)=2ax-3x^3.
当x∈[0,1]时,f(x)=f(-x)=2ax-3x^3,
其导数为2a-9x^2.
由2a-9x^2>0得x^21.
所以当x∈[0,1]时,2a-9x^2>0恒成立,即x∈[0,1]时f(x)增函数;
由对称性,知x∈[-1,0]时f(x)减函数;
可知函数最大值是f(1)或f(-1),所以
f(1)=2a-3=4,所以a=7/2属于(-6,6)

f(x)是定义在R上的偶函数,当x≥0时单调递减设f(1-m) 设f(x)是定义在R上的奇函数,y=f(x+1/2)为偶函数,则f(1)+f(2)+f(3)+f(4)=? 设f(x)是定义在R上的周期为2的偶函数 当x属于【0,1】时 f(x)=x+1 则 f(2013.5) (1)设f(x)是R上的任意函数,则下列叙述正确的是A,f(x)f(-x)是奇函数 B,f(x)|f(x)|是奇函数C,f(x)-f(-x)是偶函数 D,f(x)+f(-x)是偶函数(2)定义在区间(-∞,+∞)上的奇函数f(x)为单调增函数,偶函数g .设f(x)是定义在R上的偶函数,且f(x+3)=1-f(x),又当0 设f(x)是定义在R上周期为2的偶函数,当x属于[0,1]时,f(x)=x-2x方 设f(x)是定义在R撒谎能够的偶函数,其图像关于直线X=1对称,证明f(x)是周期函数 定义在[-2,2]上的偶函数f(x).当x>=0时单调递减,设f(1-m) 设f(x)是定义在R上的偶函数,当x 设定义在上的偶函数f(x)在区间上单调递减,若f(1-m) 设定义在[-2.2]上的偶函数f(x)在区间[0.2]上单调递减,若f(1-m) 设f(x)是定义在R上的偶函数,且f(x+2)=f(x),当0≤x≤1时,f(x)=x,则当5≤x≤6时,f(x)的表达式 设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a^2+a+1) 设f(x)是定义在R上的偶函数,在区间上(-∞,0)递增,且有f(2a^2+a+1) 设f x 是定义在r上的偶函数在区间负无穷到0上单调递增,且满足f(a^2+a+1) 设定义{-2,2}上的偶函数f(x)在区间{0,2}上单调递减,若f(1-m) !急!求助高一数学两道选择题!(1)设f(x)是R上的任意函数,则下列叙述正确的是 A,f(x)f(-x)是奇函数 B,f(x)|f(x)|是奇函数 C,f(x)-f(-x)是偶函数 D,f(x)+f(-x)是偶函数 (2)定义在区间(-∞,+∞)上的 偶函数题设定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,且f(1-m)