三角形ABC,AB=6,BC=5,AC=4.G为重心,I为内心.求GI与BC的比值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:20:54

三角形ABC,AB=6,BC=5,AC=4.G为重心,I为内心.求GI与BC的比值
三角形ABC,AB=6,BC=5,AC=4.G为重心,I为内心.求GI与BC的比值

三角形ABC,AB=6,BC=5,AC=4.G为重心,I为内心.求GI与BC的比值
做CD垂直与AB并与AB交于D,设CD=h,BD=d
1.做GE垂直与AB并于AB交于E,连接CG延长交AB于F
由重心性质可得:
GE=CD/3=h/3,BF=AB/2=3
EF=FD/3=(BD-BF)/3=(d-3)/3
BE=BF+EF=3+(d-3)/3=d/3+2
2.做IE'垂直与AB并于AB交于E'(IE'为内切圆半径),连接CI延长交AB于F'
由内心性质可得:
IE*s/2=CD*AB/2=>IE'=2h/5,其中s=a+b+c
BF':AF'=BC:AC=5:4=>BF'=10/3
可得到BE'=2d/5+2
而GI^2=(BE'-BE)^2+(IE'-GE)^2=(d^2+h^2)/15^2=BC^2/15^2
=>GI/BC=1/15

做CD垂直与AB并与AB交于D,设CD=h,BD=d
1.做GE垂直与AB并于AB交于E,连接CG延长交AB于F
由重心性质可得:
GE=CD/3=h/3,BF=AB/2=3
EF=FD/3=(BD-BF)/3=(d-3)/3
BE=BF+EF=3+(d-3)/3=d/3+2
2+h^2)/15^2=BC^2/15^2
=>GI/BC=1/15