已知a,b,c属于R+,且abc=36,则a+2b+3c的最小值是?用均值定理

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:42:33

已知a,b,c属于R+,且abc=36,则a+2b+3c的最小值是?用均值定理
已知a,b,c属于R+,且abc=36,则a+2b+3c的最小值是?用均值定理

已知a,b,c属于R+,且abc=36,则a+2b+3c的最小值是?用均值定理
由均值定理,得:
a+2b+3c≥三次根号(a*2b*3c)
=三次根号(6abc)
=三次根号(6*36)
=6
等号当且仅当a=2b=3c,即a=6,b=3,c=2时成立.
注:有如下不等式成立:(x+y+z)≥3*三次根号(xyz),等号当且仅当x=y=z时成立.这个不等式的证明,