已知椭圆C:x2/a2+y2/b2=1(a>b>0)的左、右焦点分别为F1、F2,点P(-1,-3/2)在椭圆C上,且PF1⊥x轴(PF1垂直x轴).(1)求椭圆C的方程;(2)求过右焦点F2且斜率为1的直线l被椭圆C截得的弦长|AB|;(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:57:48

已知椭圆C:x2/a2+y2/b2=1(a>b>0)的左、右焦点分别为F1、F2,点P(-1,-3/2)在椭圆C上,且PF1⊥x轴(PF1垂直x轴).(1)求椭圆C的方程;(2)求过右焦点F2且斜率为1的直线l被椭圆C截得的弦长|AB|;(
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的左、右焦点分别为F1、F2,点P(-1,-3/2)在椭圆C上,且PF1⊥x轴(PF1垂直x轴).
(1)求椭圆C的方程;
(2)求过右焦点F2且斜率为1的直线l被椭圆C截得的弦长|AB|;
(3)E、F是椭圆C上的两个动点,如果直线PE的斜率与PF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

已知椭圆C:x2/a2+y2/b2=1(a>b>0)的左、右焦点分别为F1、F2,点P(-1,-3/2)在椭圆C上,且PF1⊥x轴(PF1垂直x轴).(1)求椭圆C的方程;(2)求过右焦点F2且斜率为1的直线l被椭圆C截得的弦长|AB|;(

已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 急已知双曲线x2/a2-y2/b2=1的离心率为根号6/2,椭圆x2/a2+y2/b2=1的离心率为 已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为 已知椭圆C:x2/a2+y2/b2=1与椭圆x2/4+y2/8=1有相同的离心率,则椭圆C的方程可能是() 已知椭圆C:x2/a2+y2/b2=1(a>0,b>0)过点(1,2/3),且离心率为1/2.求椭圆的方程 已知椭圆C:y2/a2+ x2/b2=1,经过点(1/2,根号3),一个焦点是F(0,-根号3)求椭圆方程 已知椭圆C:x2/a2+y2/b2=1与椭圆x2/4+y2/8=1有相同的离心率,则椭圆C的方程可能是()A、X2/8+Y2/4=m2(m不等于0)B、X2/16+Y2/64=1C、X2/8+Y2/2=1D、以上都不可能麻烦简单说明 已知椭圆x2/a2+y2/b2的离心率为根号2/2,其焦点在圆x2+y2=1球椭圆方程 已知椭圆x2/a2+y2/b2=1与椭圆x2/25+y2/16=1有相同的长轴椭圆x2/a2+y2/b2=1的短轴长与椭圆y2/21+x2/9=1的短轴长相等,则求a2和b2的值? 已知C为椭圆X2/A2+Y2/B2=1(A>B>0)的半焦距,则(B+C)/A的取值范围 已知c是椭圆x2/a2+y2/b2=1(a>b>0)的半焦距,则(b+c)/a的取值范围是? 已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1...已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1(y>=0)内切于矩形ABCD,且CD交于y轴于点G,点P是半圆x2+y2=b2(y>=0 已知双曲线的顶点与焦点分别是椭圆的y2/a2+x2/b2=1(a>b>c)焦点与顶点,若双曲线的两已知双曲线的顶点与焦点分别是椭圆的y2/a2+x2/b2=1(a>b>c)焦点与顶点,若双曲线的两条渐进性与椭圆的交点构成的 已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为根号2/2,A1,A2是椭圆的左右顶点,B1B 2已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为根号2/2,A1,A2是椭圆的左右顶点,B1B2是椭圆的上下顶点,四边形A1A2B1B2的面积为16根号2 已知双曲线C:x2/a2-y2/b2=1(a>,b>)与椭圆x2/18+y2/14=1有共同的焦点,点A(3,根号7)在双曲线C上.求(1)双...已知双曲线C:x2/a2-y2/b2=1(a>,b>)与椭圆x2/18+y2/14=1有共同的焦点,点A(3,根号7)在双曲线C上.求(1)双曲线C 已知F1(-c,0),F2(c,0)是椭圆x2/a2+y2/b2=1的两个焦点,p为椭圆上的点且向量pf1*pf2=c2 .求椭圆离心率的范围 已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为2/3,且该椭圆上的点到右焦点的最大距离为5.1)求椭圆C方程